PalUp
AI 工程師 (AI Engineer)
Job Description
我們正在尋找一位充滿熱情且技術熟練的AI工程師加入我們的團隊,負責設計、開發和實施人工智慧解決方案。你將與跨職能團隊合作,利用機器學習、深度學習和資料分析技術來解決複雜問題並推動產品創新。
主要職責
-
設計並開發AI模型,包括機器學習和深度學習演算法,以滿足業務需求。
-
清理、預處理和分析大規模資料集,確保模型輸入資料的品質。
-
將AI模型整合到現有系統或應用程式中,並優化其效能與可擴展性。
-
與資料科學家、軟體工程師和產品經理合作,定義專案目標並交付成果。
-
持續監控和改進已部署的AI系統,確保其準確性和可靠性。
-
研究最新的AI技術和趨勢,提出應用於公司產品的創新建議。
-
撰寫清晰的技術文件,記錄模型開發過程和部署細節。
-
開發和實施大型語言模型(LLMs)、檢索增強生成(RAG)系統、AI代理和基於圖的AI解決方案,以增強智慧系統。
-
優化LLMs以適應特定用例,包括微調、提示工程和生產環境中的部署。
-
設計和構建RAG管道,整合外部知識來源,提升模型準確性和上下文相關性。
-
創建具備任務規劃、決策制定和多步推理能力的自主AI代理。
-
利用基於圖的AI技術,如知識圖譜和圖神經網路,建模複雜關係並增強決策能力。
技能與資格要求
-
學歷:電腦科學、資料科學、數學、工程或相關領域的學士學位(碩士或博士學位尤佳)。
-
經驗:至少2-3年在AI、機器學習或相關領域的實務經驗。
-
程式語言:精通Python,熟悉相關套件(如TensorFlow、PyTorch、Scikit-learn、Pandas、LangChain、LlamaIndex)。
技術能力
-
深入理解機器學習演算法(例如回歸、分類、叢集)和深度學習框架(例如CNN、RNN、Transformer)。
-
具備大型語言模型(LLMs)的專業知識,包括微調、提示工程和部署。
-
熟悉檢索增強生成(RAG)系統,包括向量資料庫(例如Pinecone、Weaviate)和嵌入模型。
-
具備構建AI代理的能力,支援任務自動化、推理和與外部API的互動。
-
了解基於圖的AI,包括圖神經網路(GNNs)、知識圖譜及其在推薦系統或網路分析中的應用。
-
精通資料處理、特徵工程以及文字、圖像或多模態資料的嵌入技術。
-
具備雲端平台(例如AWS、Google Cloud、Azure)和模型部署管道的經驗。
問題解決能力:能夠獨立分析並解決技術挑戰。
團隊合作:具備良好的溝通能力和跨部門協作經驗。
加分條件
-
具備自然語言處理(NLP)、電腦視覺或強化學習的專案經驗。
-
熟悉大數據工具(例如Hadoop、Spark)或容器技術(例如Docker、Kubernetes)。
-
發表過AI相關論文或擁有開源專案貢獻。
-
具備LLM框架(例如Hugging Face Transformers、OpenAI API)和代理框架(例如AutoGen、CrewAI)的實務經驗。
-
熟悉圖資料庫(例如Neo4j、ArangoDB)和圖演算法在AI應用中的知識。
Who We Are
We are seeking a passionate and technically skilled AI Engineer to join our team, responsible for designing, developing, and implementing artificial intelligence solutions. You will collaborate with cross-functional teams, leveraging machine learning, deep learning, and data analysis techniques to address complex problems and drive product innovation.
What You Will Do
-
Design and develop AI models, including machine learning and deep learning algorithms, to address business needs.
-
Clean, preprocess, and analyze large-scale datasets to ensure the quality of model input data.
-
Integrate AI models into existing systems or applications, optimizing for performance and scalability.
-
Collaborate with data scientists, software engineers, and product managers to define project goals and deliver results.
-
Continuously monitor and improve deployed AI systems to ensure accuracy and reliability.
-
Research the latest AI technologies and trends, proposing innovative applications for company products.
-
Write clear technical documentation, detailing model development processes and deployment specifics.
-
Develop and implement large language models (LLMs), retrieval-augmented generation (RAG) systems, AI agents, and graph-based AI solutions to enhance intelligent systems.
-
Optimize LLMs for specific use cases, including fine-tuning, prompt engineering, and deployment in production environments.
-
Design and build RAG pipelines to integrate external knowledge sources, improving model accuracy and contextual relevance.
-
Create autonomous AI agents capable of task planning, decision-making, and multi-step reasoning.
-
Leverage graph-based AI techniques, such as knowledge graphs and graph neural networks, to model complex relationships and enhance decision-making.
Who You Are
-
Bachelor’s degree in Computer Science, Data Science, Mathematics, Engineering, or a related field (Master’s or PhD preferred).
-
Experience: At least 2-3 years of hands-on experience in AI, machine learning, or related fields.
-
Technical Skills:
-
Programming Languages: Proficient in Python, with strong familiarity with relevant libraries (e.g., TensorFlow, PyTorch, Scikit-learn, Pandas, LangChain, LlamaIndex).
-
Deep understanding of machine learning algorithms (e.g., regression, classification, clustering) and deep learning frameworks (e.g., CNN, RNN, Transformer).
-
Expertise in large language models (LLMs), including fine-tuning, prompt engineering, and deployment.
-
Experience with retrieval-augmented generation (RAG) systems, including vector databases (e.g., Pinecone, Weaviate) and embedding models.
-
Proficiency in building AI agents with capabilities in task automation, reasoning, and interaction with external APIs.
-
Knowledge of graph-based AI, including graph neural networks (GNNs), knowledge graphs, and their applications in recommendation systems or network analysis.
-
Strong skills in data processing, feature engineering, and embeddings for text, image, or multimodal data.
-
Experience with cloud platforms (e.g., AWS, Google Cloud, Azure) and model deployment pipelines.
-
-
Problem-Solving: Ability to independently analyze and resolve technical challenges.
-
Team Collaboration: Excellent communication skills and experience working across departments.
Bonus If You Have
-
Project experience in natural language processing (NLP), computer vision, or reinforcement learning.
-
Familiarity with big data tools (e.g., Hadoop, Spark) or container technologies (e.g., Docker, Kubernetes).
-
Published AI-related papers or contributions to open-source projects.
-
Hands-on experience with LLM frameworks (e.g., Hugging Face Transformers, OpenAI API) and agent frameworks (e.g., AutoGen, CrewAI).
-
Knowledge of graph databases (e.g., Neo4j, ArangoDB) and graph algorithms for AI applications.